6. Second Order Design EN 2142 Electronic Control Systems

Dr. Rohan Munasinghe BSc, MSc, PhD, MIEEE Department of Electronic and Telecommunication Engineering Faculty of Engineering University of Moratuwa 10400

Second Order Systems

· General second order system

$$\xrightarrow{R(s)} \xrightarrow{K} \xrightarrow{\varpi_n^2} Y(s)$$

s) ω_n : natural undamped frequency ς : damping coefficient

- Transfer function $G_{g2}(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$

ζ Determines the Response

- $s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$
- Poles $s_1, s_2 = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 1}$
- Response
- 1. $\zeta >\!\! 1$ over damped (slow, no oscillations)
- 2. ζ =1 critically damped (quickest, nonoscillatory)
- 3. 0<
 ζ <1 under damped (damped oscillations)
- 4. ζ =0 stable sustained oscillations (simple harmonic motion)
- 5. $\zeta <\! 0$ unstable response

ζ and ω_n

• DCG of the Generic 2nd order system

$$\frac{Y(s)}{R(s)} = \frac{1}{k+K} \underbrace{\underbrace{(k+K)/m}_{s^2 + (b/m)s + (k+K)/m}}_{DCG} = \lim_{s \to 0} \underbrace{s\frac{(k+K)/m}_{s^2 + (b/m)s + (k+K)/m}}_{s^2 + (b/m)s + (k+K)/m} = 1$$

$$DCG = \frac{1}{k+K}$$

0<ζ<1 Most Common In Industry

 $j\omega_d = j\omega_n\sqrt{1-\zeta^2}$

Under Damped Response

Poles $s_1, s_2 = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$ $= -\zeta \omega_n \pm j \omega_d$

• Under damped transfer function \times $-j\omega_d = j\omega_n \sqrt{1-\zeta^2}$

$$G_2(s) = \frac{\omega_n^2}{(s + \zeta \omega_n + j\omega_d)(s + \zeta \omega_n - j\omega_d)}$$
$$- \frac{\omega_n^2}{(s + \zeta \omega_n)^2 + \omega_d^2}$$
$$= \frac{\omega_n^2}{\omega_d} \frac{\omega_d}{(s + \zeta \omega_n)^2 + \omega_d^2}$$

Peak time

Peak time t_p is the time the response takes to reach its first peak

$$\dot{y}(t) = -\frac{1}{\sqrt{1-\zeta^2}} \left[\omega_d e^{-\zeta \omega_n t} \cos(\omega_d t + \phi) - \sin(\omega_d t + \phi) e^{-\zeta \omega_n t} \zeta \omega_n \right]$$

$$= \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \left[\zeta \sin(\omega_d t + \phi) - \sqrt{1-\zeta^2} \cos(\omega_d t + \phi) \right]$$

$$= \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t + \phi - \phi)$$

$$= \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t)$$
(5.11)

when $t = t_p \ y(t) = 0$, therefore $\sin(\omega_d t_p) = 0$ $\omega_d t_p = \pi$ $\omega_n \sqrt{1 - \zeta^2} t_p = \pi$ $t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$

Unit Step Response (0<ζ<1)

Rise Time and Overshoot

• Time duration between 10%-90% of the first peak of the damped oscillation • Rule of thumb assumong $\zeta=0.5 \longrightarrow t_r \approx \frac{1.8}{\omega_n}$ at $t = t_p$ $1 - \frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t_p}\sin(\omega_d t_p + \phi) = 1 + PO$ Generic 2nd order response with DCG=1 Step Response

2.5

Overshoot

$$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t_p} \sin(\omega_d t_p + \phi) = 1 + PO$$

$$u_n t_p = \frac{\pi}{\sqrt{1 - \zeta^2}} \int \omega_d t_p = \pi$$

$$- \frac{1}{\sqrt{1 - \zeta^2}} e^{\frac{-\zeta \pi}{\sqrt{1 - \zeta^2}}} \sin(\pi + \phi) = PO$$

$$\int \sin \pi + \phi = -\sin \phi = \sqrt{1 - \zeta^2}$$

$$\frac{1}{\sqrt{1 - \zeta^2}} e^{\frac{-\zeta \pi}{\sqrt{1 - \zeta^2}}} \sqrt{1 - \zeta^2} = PO$$

$$- \frac{\zeta \pi}{\sqrt{1 - \zeta^2}} = PO$$

$$+ \frac{\zeta \pi}{\sqrt{1 - \zeta^2}} = \ln PO$$

$$\tan \beta = -\frac{\ln PO}{\pi}$$

$$\tan \beta = -\frac{\ln PO}{\pi}$$

$$\tan \beta = -\frac{\ln PO}{\pi}$$

Settling Time

Design Conditions

response has to rise before a maximum time of $t_{r,max}$

